Rumus Z Score Untuk Menghitung Data Excel


Rumus Z Score Untuk Menghitung Data Excel –  Z Score merupakan sebuah ukuran penyimpangan data yang semua nilai rata-ratanya diukur dalam satuan standar deviasinya. Apabila nilainya berada diatas rata-rata maka Z score nantinya akan memiliki nilai positif.

Sementara itu, jika nilainya berada dibawah nilai rata-rata maka Z score akan memiliki nilai negatif. Z Score sendiri juga biasa disebut sebagai nilai baku atau nilai standar.



Rumus Z Score Untuk Menghitung Data Excel

Dengan melakukan standarisasi beberapa nilai skor mentah atau nilai yang diamati langsung dari distribusi normal menjadi Z Score atau Skor Z ini akan memberikan manfaat. Adapun manfaatnya yaitu bisa memungkinkan kita untuk menghitung probalitas skor yang telah terjadi pada distribusi normal. Selain itu, kita juga dapat membandingkan antara skor satu dengan skor lain yang berasal dari populasi yang berbeda.

Penting untuk diketahui bahwa skor Z ini hanya bisa bermanfaat atau memiliki makna jika dihitung untuk pengamatan dalam bentuk distribusi normal. Distribusi normal standar sendiri merupakan suatu distribusi dalam bentuk normal yang memiliki nilai rata-rata nol (0) dengan standar deviasi satu (1).

Rumus Z Score

Rumus Z Score

 



Untuk menghitung Z Score atau nilai standar ini sebenarnya bisa dilakukan dengan sangat mudah. Namun kita harus mencari nilai rata-rata atau mean dan standar deviasi suatu populasi terlebih dahulu. Hal ini karena rumus yang digunakan untuk menghitung nilai baku caranya adalah dengan melakukan pengurangan pada nilai yang diamati (skor mentah) dengan rata-rata populasi.

Setelah itu, barulah dibagi langsung dengan standar deviasinya. Adapun rumus yang digunakan untuk menghitung Z score adalah sebagai berikut:

Z = (x-μ) / σ

Keterangan

x = nilai yang diamati (skor mentah)
μ =  rata-rata populasi
σ = adalah standar deviasi populasi
Z = Z Score (Nilai Baku)

Baca juga: Penggunaan Rumus Slovin

Cara Menghitung Z Score (Nilai Baku)

Selanjutnya kami akan memberikan contoh kasus perhitungan Z Score atau nilai baku untuk membandingkan antara nilai satu dengan nilai lain yang berasal dari 2 populasi yang berbeda. Untuk lebih jelasnya mari langsung saja simak contoh kasus perhitungan berikut ini.



Cara Menghitung Z Score

Contoh Kasus

Contoh Soal Z Score

Contoh Soal :

Contoh Soal Z Score



Tips :

Karena merupakan distribusi normal maka grafiknya memiliki bentuk sebagaimana berikut  dengan nilai rata-rata dan sudah diketahui bahwa nmahasiswa = 1000 serta sbaku = 10.

Contoh Soal Z Score

Cara yang bisa digunakan untuk menjawab pertanyaan tersebut adalah dengan menggunakan bilangan z (z-score) yang bisa dirumuskan dengan zi = (xi – x )/s dimana i = 1,2,3, …,n. Sementara pada table z-score variable (data baru) dari z1, z2, z3, …,zn  memiliki nilai rata-rata yang sama dengan 0 sedangkan untuk simpangan bakunya sama dengan 1.

Penyelesaian

Apabila sudah diketahui maka bisa langsung membuat sebuah tabel seperti berikut ini:

Contoh Soal Z Score

Jawab:

1) Jumlah mahasiswa yang mendapat nilai statistik antara 65 s/d 75 adalah sama dengan Jumlah Peluang yang mendapat nilai 65 dari 1000 mahasiswa ditambah Jumlah Peluang yang mendapat nilai 75.

Jadi, jumlah mahasiswa yang mendapat nilai statistik antara 65 s/d 75 adalah 383 orang.

Contoh Soal Z Score

2) Jumlah mahasiswa yang mendapat nilai lebih besar dari 80 adalah jumlah peluang yang dibatasi oleh nilai lebih besar dari (> 80):

Atau dibulatkan menjadi 341 orang yang mendapatkan nilai > 80 (lihat model grafik berikut)

Contoh Soal Z Score

3) Dari Σ400 orang mahasiswa yang mendapat nilai tertinggi, dengan menggunakan table z-score dan perhitungan diatas, maka nilai tertendah dari mereka adalah 82.8.

Perhitungannya dari orang, maka peluangnya (lihat table z-score) mendekati 0.3997 dari 1000 populasi yang ada dan diketahui nilai z-nya = 1.28. Maka, jika z dirumuskan dengan zi = (xi – x)/s maka didapatkan  xi – x = z  dikali dengan s.

Contoh Soal Z Score

4) Dari 300 orang yang nilainya terendah, untuk mengetahui nilai tertinggi dari mereka dapat menggunakan table z-score dan dari Σ300 orang, maka peluangnya (lihat table z-score) mendekati 0.2996 dari 1000 populasi yang ada dan diketahui nilai z-nya = -0.84. Nilai (-) diberikan karena posisinya berada disebelah kiri dari nilai rata-rata (mean).

Contoh Soal Z Score

Dengan demikian (lihat perhitungan diatas) maka dari 300 mahasiswa yang nilainya terendah, maka nilai tertinggi mereka adalah 61.6.

Tabel Z Distribusi Normal

Berikut ini kami akan menyajikan sebuah tabel Z yang berdistribusi normal standar. Distribusi normal standar merupakan distribusi normal yang sudah dilakukan transformasi sehingga distribusi normal ini mempunyai nilai rata-rata 0 dengan varian 1.

Tabel distribusi normal isinya adalah adalah peluang dari nilai Z atau P(Zz) . Seperti yang kita ketahui bersama bahwa nilai peluang umumnya selalu berada di antara 0 dan 1. Dengan demikian maka nilai-nilai yang ada di dalam tabel juga akan berada di antara 0 dan 1.

Selanjutnya kami akan memberikan sebuah ilustrasi dengan gambar kurva yang memiliki bentuk lonceng. Untuk lebih jelasnya silahkan perhatikan ilustrasi gambar di bawah ini.

Tabel distribusi normal

Gambar di atas merupakan gambar kurva distribusi normal. Luas area yang berada di bawah kurva yaitu 1. Pada tabel Z, nilai yang ditulis merupakan nilai yang didapatkan dari luas area sebelum Z atau nilai P P(Zz). .

Untuk format tabel yang kami sajikan adalah gambar atau image. Untuk memperbesar, maka tabel atau gambar tersebut bisa langsung di klik. Apabila anda ingin mendapatkan tabel yang memiliki format lebih baik (excel), maka tabelnya bisa langsung anda download pada link berikut ini.

z 0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09
-3,5 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002 0,0002
-3,4 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0003 0,0002
-3,3 0,0005 0,0005 0,0005 0,0004 0,0004 0,0004 0,0004 0,0004 0,0004 0,0003
-3,2 0,0007 0,0007 0,0006 0,0006 0,0006 0,0006 0,0006 0,0005 0,0005 0,0005
-3,1 0,0010 0,0009 0,0009 0,0009 0,0008 0,0008 0,0008 0,0008 0,0007 0,0007
-3,0 0,0013 0,0013 0,0013 0,0012 0,0012 0,0011 0,0011 0,0011 0,0010 0,0010
-2,9 0,0019 0,0018 0,0018 0,0017 0,0016 0,0016 0,0015 0,0015 0,0014 0,0014
-2,8 0,0026 0,0025 0,0024 0,0023 0,0023 0,0022 0,0021 0,0021 0,0020 0,0019
-2,7 0,0035 0,0034 0,0033 0,0032 0,0031 0,0030 0,0029 0,0028 0,0027 0,0026
-2,6 0,0047 0,0045 0,0044 0,0043 0,0041 0,0040 0,0039 0,0038 0,0037 0,0036
-2,5 0,0062 0,0060 0,0059 0,0057 0,0055 0,0054 0,0052 0,0051 0,0049 0,0048
-2,4 0,0082 0,0080 0,0078 0,0075 0,0073 0,0071 0,0069 0,0068 0,0066 0,0064
-2,3 0,0107 0,0104 0,0102 0,0099 0,0096 0,0094 0,0091 0,0089 0,0087 0,0084
-2,2 0,0139 0,0136 0,0132 0,0129 0,0125 0,0122 0,0119 0,0116 0,0113 0,0110
-2,1 0,0179 0,0174 0,0170 0,0166 0,0162 0,0158 0,0154 0,0150 0,0146 0,0143
-2,0 0,0228 0,0222 0,0217 0,0212 0,0207 0,0202 0,0197 0,0192 0,0188 0,0183
-1,9 0,0287 0,0281 0,0274 0,0268 0,0262 0,0256 0,0250 0,0244 0,0239 0,0233
-1,8 0,0359 0,0351 0,0344 0,0336 0,0329 0,0322 0,0314 0,0307 0,0301 0,0294
-1,7 0,0446 0,0436 0,0427 0,0418 0,0409 0,0401 0,0392 0,0384 0,0375 0,0367
-1,6 0,0548 0,0537 0,0526 0,0516 0,0505 0,0495 0,0485 0,0475 0,0465 0,0455
-1,5 0,0668 0,0655 0,0643 0,0630 0,0618 0,0606 0,0594 0,0582 0,0571 0,0559
-1,4 0,0808 0,0793 0,0778 0,0764 0,0749 0,0735 0,0721 0,0708 0,0694 0,0681
-1,3 0,0968 0,0951 0,0934 0,0918 0,0901 0,0885 0,0869 0,0853 0,0838 0,0823
-1,2 0,1151 0,1131 0,1112 0,1093 0,1075 0,1056 0,1038 0,1020 0,1003 0,0985
-1,1 0,1357 0,1335 0,1314 0,1292 0,1271 0,1251 0,1230 0,1210 0,1190 0,1170
-1,0 0,1587 0,1562 0,1539 0,1515 0,1492 0,1469 0,1446 0,1423 0,1401 0,1379
-0,9 0,1841 0,1814 0,1788 0,1762 0,1736 0,1711 0,1685 0,1660 0,1635 0,1611
-0,8 0,2119 0,2090 0,2061 0,2033 0,2005 0,1977 0,1949 0,1922 0,1894 0,1867
-0,7 0,2420 0,2389 0,2358 0,2327 0,2296 0,2266 0,2236 0,2206 0,2177 0,2148
-0,6 0,2743 0,2709 0,2676 0,2643 0,2611 0,2578 0,2546 0,2514 0,2483 0,2451
-0,5 0,3085 0,3050 0,3015 0,2981 0,2946 0,2912 0,2877 0,2843 0,2810 0,2776
-0,4 0,3446 0,3409 0,3372 0,3336 0,3300 0,3264 0,3228 0,3192 0,3156 0,3121
-0,3 0,3821 0,3783 0,3745 0,3707 0,3669 0,3632 0,3594 0,3557 0,3520 0,3483
-0,2 0,4207 0,4168 0,4129 0,4090 0,4052 0,4013 0,3974 0,3936 0,3897 0,3859
-0,1 0,4602 0,4562 0,4522 0,4483 0,4443 0,4404 0,4364 0,4325 0,4286 0,4247
-0.0 0,5000 0,4960 0,4920 0,4880 0,4840 0,4801 0,4761 0,4721 0,4681 0,4641
0,0 0,5000 0,5040 0,5080 0,5120 0,5160 0,5199 0,5239 0,5279 0,5319 0,5359
0,1 0,5398 0,5438 0,5478 0,5517 0,5557 0,5596 0,5636 0,5675 0,5714 0,5753
0,2 0,5793 0,5832 0,5871 0,5910 0,5948 0,5987 0,6026 0,6064 0,6103 0,6141
0,3 0,6179 0,6217 0,6255 0,6293 0,6331 0,6368 0,6406 0,6443 0,6480 0,6517
0,4 0,6554 0,6591 0,6628 0,6664 0,6700 0,6736 0,6772 0,6808 0,6844 0,6879
0,5 0,6915 0,6950 0,6985 0,7019 0,7054 0,7088 0,7123 0,7157 0,7190 0,7224
0,6 0,7257 0,7291 0,7324 0,7357 0,7389 0,7422 0,7454 0,7486 0,7517 0,7549
0,7 0,7580 0,7611 0,7642 0,7673 0,7704 0,7734 0,7764 0,7794 0,7823 0,7852
0,8 0,7881 0,7910 0,7939 0,7967 0,7995 0,8023 0,8051 0,8078 0,8106 0,8133
0,9 0,8159 0,8186 0,8212 0,8238 0,8264 0,8289 0,8315 0,8340 0,8365 0,8389
1,0 0,8413 0,8438 0,8461 0,8485 0,8508 0,8531 0,8554 0,8577 0,8599 0,8621
1,1 0,8643 0,8665 0,8686 0,8708 0,8729 0,8749 0,8770 0,8790 0,8810 0,8830
1,2 0,8849 0,8869 0,8888 0,8907 0,8925 0,8944 0,8962 0,8980 0,8997 0,9015
1,3 0,9032 0,9049 0,9066 0,9082 0,9099 0,9115 0,9131 0,9147 0,9162 0,9177
1,4 0,9192 0,9207 0,9222 0,9236 0,9251 0,9265 0,9279 0,9292 0,9306 0,9319
1,5 0,9332 0,9345 0,9357 0,9370 0,9382 0,9394 0,9406 0,9418 0,9429 0,9441
1,6 0,9452 0,9463 0,9474 0,9484 0,9495 0,9505 0,9515 0,9525 0,9535 0,9545
1,7 0,9554 0,9564 0,9573 0,9582 0,9591 0,9599 0,9608 0,9616 0,9625 0,9633
1,8 0,9641 0,9649 0,9656 0,9664 0,9671 0,9678 0,9686 0,9693 0,9699 0,9706
1,9 0,9713 0,9719 0,9726 0,9732 0,9738 0,9744 0,9750 0,9756 0,9761 0,9767
2,0 0,9772 0,9778 0,9783 0,9788 0,9793 0,9798 0,9803 0,9808 0,9812 0,9817
2,1 0,9821 0,9826 0,9830 0,9834 0,9838 0,9842 0,9846 0,9850 0,9854 0,9857
2,2 0,9861 0,9864 0,9868 0,9871 0,9875 0,9878 0,9881 0,9884 0,9887 0,9890
2,3 0,9893 0,9896 0,9898 0,9901 0,9904 0,9906 0,9909 0,9911 0,9913 0,9916
2,4 0,9918 0,9920 0,9922 0,9925 0,9927 0,9929 0,9931 0,9932 0,9934 0,9936
2,5 0,9938 0,9940 0,9941 0,9943 0,9945 0,9946 0,9948 0,9949 0,9951 0,9952
2,6 0,9953 0,9955 0,9956 0,9957 0,9959 0,9960 0,9961 0,9962 0,9963 0,9964
2,7 0,9965 0,9966 0,9967 0,9968 0,9969 0,9970 0,9971 0,9972 0,9973 0,9974
2,8 0,9974 0,9975 0,9976 0,9977 0,9977 0,9978 0,9979 0,9979 0,9980 0,9981
2,9 0,9981 0,9982 0,9982 0,9983 0,9984 0,9984 0,9985 0,9985 0,9986 0,9986
3,0 0,9987 0,9987 0,9987 0,9988 0,9988 0,9989 0,9989 0,9989 0,9990 0,9990
3,1 0,9990 0,9991 0,9991 0,9991 0,9992 0,9992 0,9992 0,9992 0,9993 0,9993
3,2 0,9993 0,9993 0,9994 0,9994 0,9994 0,9994 0,9994 0,9995 0,9995 0,9995
3,3 0,9995 0,9995 0,9995 0,9996 0,9996 0,9996 0,9996 0,9996 0,9996 0,9997
3,4 0,9997 0,9997 0,9997 0,9997 0,9997 0,9997 0,9997 0,9997 0,9997 0,9998
3,5 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998

Mengubah Skor Ke Bentuk Skor Standar (Z Score) dan Skor Tersandar T (T Score) di SPSS

Untuk melengkapi pembahasan kali ini kami juga akan menjelaskan bagaimana cara mengubah skor ke bentuk standar (Z Score) dan skor terstandar (T Score) di SPSS.  Sebelumnya sudah kami jelaskan bahwa rumus Z Score terbilang cukup sederhana dan mudah. Jadi  kita bisa melakukan perhitungan secara manual satu per satu dengan menggunakan kalkulator atau bisa juga menggunakan bantuan excel.



Leave a Comment